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1. Relatively Open Sets

Let E ⊂ R and let V ⊂ E. We say that E is relatively open in E if there
exists an open set U ⊂ R such that U ∩ E = V . Similarly, a subset G ⊂ E is
relatively closed if E r G is relatively open. This is equivalent to the existence
of a closed set F ⊂ R such that F ∩ E = G.

Proposition 1. Let f : E → R be a function. Then f is continuous on E if
and only if for every open set V ⊂ R, the set f−1(V ) is relatively open in E.

2. Homeomorphism

Let A and B be subsets of R. A homeomorphism from A to B is a bijective
continuous function f : A → B such that f−1 is also continuous.

It is natural to suppose that any bijective continuous function is a homeomor-
phism, but this is not the case.

Example 1. Let A = (0, 1) ∪ [2, 3) and let B = (0, 2). Define f : A → B by

f(x) =

{
x if x ∈ (0, 1);
x− 1 if x ∈ [2, 3).

This function is clearly bijective and continuous at every point in A; however,
its inverse is discontinuous.

We have seen that the continuous image of a compact set is compact. We will
use this fact in the next proposition.
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Proposition 2. Let f : A → B be a bijective continous function. If A is
compact, then f is a homeomorphism.

Lemma 1. If F is closed and U is open, then F r U is closed and U r F is
open.

Proof of Lemma. Since F r U = F ∩ (R r U) is the intersection of closed sets,
it is closed. On the other hand, since U r F = U ∩ (R r F ) is the intersection of
open sets, it is open. �

Proof of Proposition. Let g = f−1 so that g : B → A is a bijective function; we
wish to show that g is continuous.

Let ε > 0 and select x0 ∈ B. Since A is compact, it is closed and bounded
Let U = (g(x0) − ε, g(x0) + ε). Then U is open, and K = A r U is also closed
and bounded, and hence compact. Since the continuous image of a compact set
is compact, we see that f(K) is compact, and hence closed. Let V = R r f(K);
this set is open. Note that

g(B ∩ V ) = g(B r f(K))

= g(B) r g(f(K))

= g(B) r K

= A r (A r U)
= U.

Now g(x0) /∈ K, so x0 = f(g(x0)) /∈ f(K), so x0 ∈ V . Therefore there exists
δ > 0 such that (x0 − δ, x0 + δ) ⊂ V . Thus if x ∈ B and |x − x0| < δ, we have
f(x) ∈ U , which says that |f(x)− f(x0)| < ε. �
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3. Connectedness Revisited

Recall the definition of a closed interval:

[a, b] = {x ∈ R | a ≤ x ≤ b}.

Recall the definition of connectedness:
A subset A ⊂ R is disconnected if there exist disjoint open sets U1, U2 ⊂ R

with A ∩ U1 6= ∅ and A ∩ U2 6= ∅ such that A ⊂ (U1 ∪ U2). Otherwise, we say
that A is connected.

Proposition 3. Let f : E → R be a continuous function, If E is connected,
then f(E) is connected.

Proof. It suffices to show that if f(E) is disconnected, then E is disconnected.
Thus assume that f(E) is disconnected, and let V1 and V2 be open subsets of R
such that f(E) ∩ V1 6= ∅, f(E) ∩ V2 6= ∅, but f(E) ⊂ (V1 ∪ V2).

Let E1 = f−1(V1) and E2 = f−1(V2). We wish to find disjoint open sets U1

and U2 such that E1 = E ∩ U1 and E2 = E ∩ U2.
For each y ∈ f(E) there exists εy > 0 such that (y − εy, y + εy) ⊂ Vi, where

y ∈ Vi. Since f is continuous, for each x ∈ E there exists δx > 0 such that
f((x− δx, x + δx)) ⊂ (y − εy, y + εy), where y = f(x).

Set Ui = ∪x∈Ei
(x − δx, x + δx), for i = 1, 2. Then U1 and U2 are open sets.

Also E ∩U1 6= ∅, E ∩U2 6= ∅, but E ⊂ (U1 ∪U2). Thus, E is disconnected. �

Proposition 4. Let A ⊂ R. Then A is connected if and only if

a, b ∈ A ⇒ [a, b] ⊂ A.

Proof. We prove both directions.
(⇒) Let a, b ∈ A with a < b and suppose that [a, b] is not contained in A.

Then there exists c ∈ [a, b] such that c /∈ A. Set U1 = (−∞, c) and U2 = (c,∞);
then a ∈ U1, b ∈ U2, and A ⊂ U1 ∪ U2. Thus A is disconnected.

(⇐) Suppose that for every a, b ∈ A with a < b, we have [a, b] ⊂ A. Let U1

and U2 be open sets with A ∩ U1 6= ∅, A ∩ U2 6= ∅, and A ⊂ U1 ∪ U2. We wish
to show that U1 ∩ U2 6= ∅.

Let a ∈ U1 and b ∈ U2; without loss of generality, assume that a < b. Let
c = supU1 ∩ [a, b]. Clearly c ∈ [a, b], so either c ∈ U1 or c ∈ U2.

If c ∈ U1, then there exists ε > 0 such that (c − ε, c + ε) ⊂ U1. Thus
c + min{ ε

2 , c+b
2 } is also in U1 and in [a, b], contradicting the definition of c.

Thus c ∈ U2, so there exists ε > 0 such that (c − ε, c + ε) ⊂ U2. But by the
definition of c, there exists d ∈ U1 ∩ [a, b] such that d ∈ (c − ε, c) ⊂ U2. Thus
U1 ∩ U2 6= ∅. �

Proposition 5. Let K ⊂ R be a compact set. Then inf K ∈ K and supK ∈ K.

Proof. Exercise. �

Proposition 6. A compact connected set is a closed interval.

Proof. Exercise. �
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4. Intermediate Value Theorem

Theorem 1. Let f : [a, b] → R be a continuous function with f(a) · f(b) < 0.
Then there exists c ∈ [a, b] such that f(c) = 0.

Proof. Assume that f(a) < 0 < f(b). Since f([a, b]) is connected, [f(a), f(b)] ⊂
f([a, b]). Since 0 ∈ [f(a), f(b)], then 0 ∈ f([a, b]). That is, f(c) = 0 for some
c ∈ f([a, b]). �
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